
Video Reality™: Creating Navigable Feature Film Environments

John A. Toebes, VIII
Vice President, Research and Development

toebes@southpeak.com
SouthPeak Interactive

One Research Drive, Cary, NC 27513

Synopsis
Interactive video is considered somewhat of an oxymoron in the gaming industry. Much of the
effort to date has been of the form of switching video streams based on user input. During this
time, polygon-based games have been created to provide the user with a more interactive
experience while sacrificing the quality and realism that the video environment provides. With
this increase in realism, the collaboration necessary to produce these video based titles has
grown.

The Video Reality™ technology is both a technology and a development system targeted at
addressing the needs of both the game creators and the game players.

For the players, Video Reality delivers continuous freedom of movement with a 360 degree field
of vision throughout the game environment. Some games limit players to multi-directional vision
only at pre-defined spots, then move them from one of these spots to another without giving
them the immediate opportunity to change their minds, back-track, or even choose what they
are looking at while they go. Video Reality completely immerses the players in the game, letting
them control where they want to go, when they want to go, and what they want to look at on the
way there.

For the creators, Video Reality delivers a multi-user, highly automated tool to facilitate the
collaborative process of planning, designing, assembling, optimizing and running immersive,
video-based computer games. The system has been developed as a technology for creating a
wide range of interactive titles and not just for a single title.

Origins
Two traditional gaming environments: Video Click-and-Play vs. Rendered-on-the-Fly

We created Video Reality by looking at both ends of the spectrum for presenting a gaming
environment. On one end of the spectrum, we have what we call the “Video” style of click the
mouse and a video or show a picture which has been used quite successfully in a number of

titles because it offers the opportunity to provide a high quality image to the user. On the other
end, we have what we call the “Reality” style -- virtual reality polygon based environments
which are rendered on the fly to provide the greatest degree of freedom of movement.

Click and Play (“Video”) Render on the Fly (“Reality”)
Color
Quality

High Quality (16-bit color and better
or 8-bit optimized palettes)

Based on memory and machine
performance (Typically 8 bit)

Detail Rich detailed environments. Ray
traced, 100,000+ polygons or real
environment.

Limited by machine performance 10,000+
polygons

Navigation Limited to predefined shots and
locations

Unlimited (within constraints of the
rendering engine)

Variability of
Environment

Typically limited to display on pre-
rendered backgrounds

High degree of variability as provided by
rendering/animation engine.

Game Play Typically puzzle solving/searching or
twitch based action

Typically shoot-em-up action

While both of these have their advantages, there is an opportunity to provide the best of both
environments. In fact, a constant demand from the render-on-the-fly crowd is more, faster,
better polygon rendering to which there has been a response of hardware 3D accelerators. No
matter what happens, the performance will be limited to how fast we can make the hardware. If
we are to assume that it typically takes about one hour to render a single high-quality frame on a
high-end workstation (short cuts can certainly cut this time down), and we were to assume that
machines double in performance every year (Moore’s law implies a doubling in performance
every 18 months), then we should see the average machine able to render at 30 frames/second
sometime around the year 2014i. J

Given the desire to provide the best of both worlds in the near future, we decided to attack the
problem of making the video based environment more navigable. We rejected a number of
techniques which involved simply putting the user on a path and allowing them to make ‘twitch’
choices. Instead we focused on techniques that allow a user to essentially control a camera in
an environment. The problems were then reduced to figuring out how to capture the
environment and then allow the user to play it back. Along the way, we read many quotes from
people that said that video can not be interactive.

Planning a technology and not a single title
We decided to focus first on making a technology and then on the titles using the technology.
This was an easy ordering for us since we already had in mind quite a few potential titles. The
approach of planning for a technology allowed for the freedom of sitting back and designing a
complete system without having to worry about delivering a title yesterday. It allowed us the
necessary time to smooth out the rough edges and to plan for a system that is capable of
handling multiple titles efficiently instead of being tied to a single title.

Our work broke out into several important parts:

1) Architecting the development system. We assembled a team of seasoned system designers
(and gamers) to lay out the overall system components. This first structure chart occupied
an entire wall in the conference room and is still valid today. We looked at making the
system flexible to handle a wide variety of titles while optimizing those things that were
commonly done.

2) Planning video production methods. Because we are part of a video production facility that has
been working for 15 years with video and film, we had the opportunity to plan the
technology around the way that production people work instead of forcing them into a
programmer mindset.

3) Testing the technology. This is certainly one of the most fun parts. Over the course of the first
two years, we shot a number of sample productions and put them together with the toolset to
learn what was necessary to be efficient as well as to iron out problems with shooting a Video
Reality production. Of course, none of these productions were ever planned to be shipped to a
customer.

Only when we were satisfied that the technology would produce a viable title did we actually
start on our first production - Temüjin™: The Capricorn Collection™. This title was designed
from the start to take advantage of the strengths of our technology, while at the same time
offering the richness, characters, and gameplay that people have come to expect in a top-quality
game.

It is worth noting that if we were only attempting to produce a single title (or a small series of
titles), this approach is not a very cost effective one. Much of the effort in creating a reusable
tool-set could have been more productively focused on the individual titles.

Introducing Video Reality
The result of this is a system that allows us to film (or render in high quality graphics) a complete
and richly populated environment. The user can seamlessly navigate through this environment
interacting with objects and characters as part of a well orchestrated experience. This resulting
“spatial video” is a fundamentally new concept which we have invested more than a hundred
person years in developing and fine tuning.

Targeting a minimum platform
Very early on in our development cycle, we looked at the minimum machine configuration
necessary to deliver an acceptable experience and had initially settled on a DX4/100 with a
hardware MPEG playback assist. However, after attempting to work with the MPEG hardware
manufacturers with little success, we ended up targeting a Pentium® 90 class machine. While
this seemed like abandoning part of the market, we felt that it was more important to preserve a
minimum level of experience. In order to maximize our success in the marketplace, we decided
to hold back the technology until this was an acceptable minimum platform.

Designing for collaboration
The most important part of our technology was to ensure that the titles can be created efficiently.
We did not want to be held back waiting on a single person to edit a title, so we instead focused
on a truly multi-user collaborative environment. By treating the production as a database, we
were able to allow a number of people to work on the title at once. In fact, we have had a dozen
people working on hotspots for the same production all at one time.

This collaboration goes beyond the tool-set. The process of creating a title involves taking the
best that everyone has to offer. It is easy to spot the titles that were created primarily by an
artist, or a programmer, or a film producer. It is when you have several of them working
together to balance a game that the best titles are created. In doing this, we broke down the
different types of people who participate in the process:

Person Responsibilities/Talents
Writer Creates story, dialog, characters, and settings
Game Designer Creates logic and connective gameplay

Title Engineer Creates high level logic and provides game play balance
Lead Programmer Creates low level logic and ‘flash’
Tools Developer Automates inefficient game creation tasks
Graphic Artist Creates artwork and backdrops
Director/Producer Creates film/video environments that fit into the game
Audio Engineer Creates sound and music for the game
Video Engineer Provides balance and quality in the video environment
Navigator (Unique to Video Reality) Ensures navigability of the captured environment
User Interface Designer Creates GUI and user interface metaphors

By allowing each person to do their job within the environment, we were able to maximize the
talents of all the people involved. For example, the User Interface Designer can quickly import
bitmaps and try out the created controls without having to go through the often tedious process
of creating separate control component bitmaps. The Audio Engineer can test out sound
components within the runtime environment. The Title Engineer can focus on the important task
of play balancing the title -- without having to worry about how a particular bitmap is going to be
rendered on the screen. Even the writer is given an opportunity to test out the script in a
playable mode.

While we went to great lengths to provide for collaboration, we did not want to recreate the
wheel. There are many excellent tools out there for creating bitmaps and editing together video.
For these types of operations, we chose to continue to use those tools in their native form, but to
quickly incorporate their output into the Video Reality system.

Capabilities
The Basics (bitmaps, sound, music, mouse)

Because Video Reality was designed as a interactive title development system, it has all of the
basic capabilities that one would expect. You can display and move bitmaps, play sound, play
music, respond to mouse moves and clicks, save and restore productions, and even manage
inventory.

Navigable Video
What makes the technology particularly unique is that it offers a method of creating highly
navigable video. This means that the end user can move through the environment at will. They
can choose to go somewhere, look around as they are going there, stop at any time, and even
go back to where they came - all on their own terms. If you were to video tape a house to show
off to someone, they would be forced to go through it in the order that you taped it. However,
with Video Reality, they can choose to go through in any order looking where they want to.

Hotspots
If all someone could do was to walk through a scene, it could be pretty boring (although the
pictures would be pretty). Clearly as someone is looking at something they would like to be able
to interact with it. Recognizing that such an environment would be far richer, we developed a
technology that allows us to manage a very large number of hot-spots across the entire video

environment. For example, we have been able to shoot a greenhouse and put a hot-spot on
every plant in the environment on every frame that it appears in - over 27,000 clickable areas -
in just under three weeks. What the hotspots do is completely in the control of the Title
Engineer.

Integrated spatial/dramatic scenes
Once you have clicked on a hotspot or performed some actions, there is often some sort of a
dramatic event that may need to be carried out. However, instead of jumping to a cut scene as
is typical, the dramatic video is seamlessly integrated into the user’s navigation. While we often
refer to these as dramatic scenes for production purposes, it is often difficult to separate them
out from the truly navigable video.

Object integration
By itself, video may not offer enough variability in the environment. There are only so many
replenishable items (stacks of paper, cups of pencils, an infinite supply of anything) that you can
put into a title. Often there is a need to provide a unique item which the user can take with
them. We have approached this in one of two ways. For central items which may have a
dramatic effect on an environment, we can pre-create the environment both with and without the
object. At runtime we can automatically select the appropriate clips. For other objects, we can
dynamically adjust the video image to include a picture of the object anti-aliased into the image.
The placement of these objects is done at edit time and can allow for a very high quality
integration.

Of course, this allows our graphic artists to really stretch their talents as they create models of
actual objects which were encountered on the set to match the environment exactly.

GUI design
Another important aspect to creating a gaming environment is to allow for a user interface which
is consistent with the gaming environment. Typically this requires the creation of organic design
elements which fit into the character of the experience. With this constraint, the typical drag a
button out of the toolbox and slap it into the environment just doesn’t cut it. However, when a
graphic designer has to create custom buttons and button states for each spot that the user
interacts with, it can quickly be overwhelming. There are many examples of titles where the final
graphic was misplaced by a single pixel, marring what would have otherwise been a very
beautiful effect. With our GUI Designer™ tool, the graphic artist can quickly import a series of
bitmaps and then identify the active areas of the bitmaps. The system automatically handles
cutting them out and even defining the basic logic.

Basic logic
This basic logic can range from something as simple as playing a sound to showing a picture.
In fact, it is extremely common that the same action or series of actions applies to a wide range
of elements in a title. To make this more efficient, the Video Reality system was designed with a
simple flow language (with a syntax that is familiar to people who use Microsoft’s Visual Basic)
that has been extended with object oriented concepts. Hence a simple class can be created for

i At 1 hour/frame, you end up with 1hour=60minutes=60*60seconds=60*60*30 frames=108,000 times slower than we need to be. If we
double each year, we have 1998=2, 1999=4, 2000=8, … 2012=32768, 2013=65536, 2014=131072. Really applying Moore’s law of every
18 months and using the more conservative figure of 4 hours per frame, the actual break even year is 2042, but we like to be optimists.

a button, yet the actions can be overridden for a button which may need special handling.
Because of this, while we originally expected our first title to have 3000-5000 of these tiny flows,
we are finding that the reuse paradigm is so strong that we are currently anticipating fewer than
1000 of these 3-15 line subroutines to be written for the entire title.

ActiveX integration
We recognized that there are two types of programmers. Someone who is good at play
balancing the logic of any title is not a likely candidate for the high performance graphic intense
routines. Instead of having to find such a rare person, we can instead take advantage of the
people who are good at one of these areas and have them work together.

Through the use of Microsoft’s ActiveX technology, we have the ability to separately build (and
test!) any of these graphically intense components and then integrate them into the production.
The flow language can readily communicate with these components and provide the high level
control of the applications. We were then able to have separate programmers write these
custom components such as a page turner, newspaper reader, jigsaw puzzle, navigation map,
and even a scorpion game. In fact, the jigsaw puzzle OCX turned out to be so much fun that we
decided to send it out as a separate product (at this writing, we at SouthPeak Interactive have
released four Virtual Jigsaw™ products) and to incorporate it into our web page.

The Process
Having the capabilities in the system is not sufficient to bringing out a title. We also set in place
a complete process for putting together a production. While every system has some sort of
process to creating a title, what we have done is put a lot of effort into the planning and
collaboration.

1. Planning the experience
All great titles start out with an idea. With StoryWriter™, we are able to put together a playable
script for the title quickly while identifying assets and components. The output of this process
directly feeds into the production database. Because we recognized that many writers prefer to
work in Microsoft Word, we used the automation capabilities of Word97 to allow us to
interactively define a script and run it right in that environment. This ability to test a script in
development is very important early in the process to identify holes in the logic and to tighten up
game play.

The StoryWriter system allows the game designer to identify all of the assets, characters, logic,
conversations, environments, and custom components. In this way the script is as much a
programming design document as it is a game play description.

As the script becomes more refined and detailed, the assets and basic components get more
defined in the system. The title engineering team can take the refined script and add real assets
to fill in the placeholders at any time. In this way, there is a smooth progression from a
prototype to a finished product.

2. Designing the environment
During the later phases of the story development, the title engineering team also starts the task
of creating the basic programming glue that holds the title together. Video Reality Studio
provides them with a large number of basic classes and components to start from providing the
basics behind button logic, navigation, some inventory management, and even video control.
During this phase, the user interface is designed and polished using the toolset.

This is where the real game play is put in. While some tools have attempted to take the
programmer out of the picture, we recognized that there are really two types of programmers
that you want involved in the product. For all of the high level logic and glue that makes a game
playable and balanced, the title engineering team uses our high level flow language and objects.
However, we didn’t forget that there is a need for a level of interactivity that goes beyond the

basics. For these, we were able to take advantage of component technology to allow a C++
programmer to create the more interactive components.

The result of this is a playable title with very rough assets (yes, that blue watering can is
supposed to represent the Amulet of Knowledge) and plenty of placeholders. We can mark
these assets as placeholders instead of having to remember to replace them later on (or worse,
shipping a product with a temporary asset).

3. Assembling the components
As the title is being laid out, the production crew is working rapidly to create all of the assets:
video clips, bitmaps, sound effects, etc.. With any interactive product, there are tens of
thousands of individual assets, sometimes with many iterations on the same asset until it is right.
In fact, sometimes the new asset doesn’t work out as well as the old one. For this, the system
being designed around a database works very well. We track multiple candidates for a single
asset and allow the title engineering team to choose which candidate will be used for the final
product.

The multi-user nature of Video Reality Studio really helps in this phase because of the
overwhelming number of assets that need to be handled. Because the system allows for

multiple concurrent users working on the same production, the bottleneck of waiting for a single
person to check in assets is reduced.

One important place where this bottleneck is completely eliminated is the addition of hotspots to
this extremely rich environment. With the ability to have multiple people working on the same
project, it is easy to assign the tasks of different areas to different people to achieve the value of
the proverbial “Mongolian horde” approach to solving a task. We have had as many as 20
people all working on the same production at one time defining hotspots and their actions. Most
importantly here is that the Lead Title Engineer is freed from this monotonous task to be able to
concentrate on the overall gameplay.

4. Optimizing the layout
While we designed a multi-user database for creating and maintaining a production, we knew
that this would not be optimal for running a final production on the user’s machine. Furthermore,
we did not want the title engineering team to have to go through a series of tedious steps in
creating a final CD only to find that something has been left out.

To solve this problem, we have a binder process which takes the database, assembles all of the
assets (performing a final sanity check on all of them), converts them to their final
representation, and lays them out for the CD. It puts everything under a single directory (or
multiple directories for multiple disks) which includes all of the assets and executable
components. All the engineering team has to do is burn the final CD straight from that directory.

The binder system also is responsible for optimizing the placement of the assets on the CD in
order to ensure that the system runs more efficiently as well as trimming away any excess in the
assets (extra frames, unused audio, unreachable logic).

5. Running the final product
What is probably the most impressive part that the user never sees is that the final CD has
everything necessary to just run on the end user’s system. Through our proprietary auto-load
technology, the system dynamically adapts to whatever the user has installed on their machine -
including incompatible versions of DLLs. If the user’s machine is already in a running state,
nothing is replaced. Instead the runtime system dynamically loads the appropriate versions
from the CD for the duration of the game.

Once up and running, the Video Reality Engine goes through the task of allowing the user to
seamlessly navigate through the environment. The engine manages access to the disk,
dynamically pulling in assets and logic as they are needed - even taking advantage of times that
the user is pausing to think.

An extra bonus that was designed into the system from the start is the ability to debug even the
final production. Through the use of special side files (which are built into a separate directory),
the title engineering team has the ability to view source code, set breakpoints, examine
variables, and generally trace the flow of the environment. This system also allowed us to build
in a complete testing environment so that all of the actions that a tester takes can be captured
and played back at will. Since this capturing can be directed over the network to another

machine, any crashes can be diagnosed and reproduced by simply playing back the captured
file. This makes quick work of any of those intermittent crashes.

By combining this technology with our ActiveX integration, we have also built into the beta
portion of the cycle the ability for our testing lab to simply press a key and not only enter the
description of the problem, but have the system track where they were in the game. This has
greatly reduced our turnaround for fixing problems reported by the testers.

The Results
In the end, it is not the technology or the amount of planning that went into the title that makes it
appealing to the end user. They must find the experience to be enjoyable and challenging.
With the Video Reality technology, we have created the opportunity to put them in real (or
created in painstaking detail) environments. The game designer is offered an opportunity to
concentrate on the gameplay aspects to provide a balanced game.

The end result is that the user gets the richness of a video environment, the rendered
navigability of a virtual reality environment, and the gameplay that only a well balanced team
can provide.

Where Do We Go From Here
Video Reality is a long way from being finished. The industry and platforms will continue to
evolve. Around the corner is DVD which we feel is an excellent medium to deliver Video Reality
titles on. The usage of MPEG-2 immediately quadruples the usable resolution of the
environment with virtually no impact on the development process.

While it might not have been initially obvious, the inserted objects and even characters in the
environment could be rendered by taking advantage of many of the advances in 3D hardware.
Instead of dedicating the majority of polygons to the environment and a scant few to the
characters and objects, we can create richly detailed and animated characters by applying
thousands of polygons to them instead.

Because we are focused on the R&D aspects of the technology, we will continue to evolve
Video Reality to provide richer and more interactive game experiences. Temujin: The Capricorn
Collection is only the first of many titles to come.

Copyright

Video Reality, GUI Designer, StoryWriter, Temüjin, The Capricorn Collection, and Virtual Jigsaw and the Video Reality logo are trademarks licensed to
SouthPeak Interactive LLC, Cary, NC, USA. Other trademarks are the property of their respective holders.

	Synopsis
	Origins
	Two traditional gaming environments: Video Click-and-Play vs. Rendered-on-the-Fly
	Planning a technology and not a single title
	Introducing Video Reality
	Targeting a minimum platform
	Designing for collaboration

	Capabilities
	The Basics (bitmaps, sound, music, mouse)
	Navigable Video
	Hotspots
	Integrated spatial/dramatic scenes
	Object integration
	GUI design
	Basic logic
	ActiveX integration

	The Process
	1. Planning the experience
	2. Designing the environment
	3. Assembling the components
	4. Optimizing the layout
	5. Running the final product

	The Results
	Where Do We Go From Here

